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[1] Estimates of surface fluxes of carbon monoxide (CO) inferred from remote sensing
observations or free tropospheric trace gas measurements using global chemical transport
models can have significant uncertainties because of discrepancies in the vertical transport
in the models, which make it challenging to unequivocally relate the observations back to
the surface fluxes in the models. The new Measurement of Pollution in the Troposphere
(MOPITT) version 5 retrievals provide greater sensitivity to lower tropospheric CO over
land relative to the previous versions and are, therefore, useful for evaluating vertical
transport in models. We have assimilated the new MOPITT CO retrievals, using the
Goddard Earth Observing System (GEOS)-Chem model, to study the influence of vertical
transport errors on inferred CO sources. We compared the source estimates obtained by
assimilating the CO profiles, the column amounts, and the surface level retrievals for
June–August 2006. The three different inversions produced large differences in the source
estimates in regions of convection and strong CO emissions. The inversion using the CO
profiles suggested an 85% increase in emissions in India/Southeast Asia, which
exacerbated the model bias in the lower and middle troposphere, whereas using the surface
level retrievals produced a 37% decrease in Indian/Southeast Asian emissions, which
exacerbated the underestimate of CO in the upper troposphere. Globally, the inversion with
the surface retrievals suggested a 22% reduction in emissions from the a priori estimate of
161 Tg CO/month (from combustion and the oxidation of biogenic volatile organic
compounds), averaged in June–August 2006. The analysis results were validated with
independent surface CO measurements from NOAA Global Monitoring Division (GMD)
network and upper troposphere CO measurements from the Civil Aircraft for the Regular
Investigation of the Atmosphere Based on an Instrumented Container (CARIBIC). We
found that the inversion with the surface retrievals agreed best with surface CO data but
produced the largest discrepancy with the CARIBIC aircraft data in the upper troposphere,
suggesting the influence of vertical transport errors in the model. Our results show that the
comparison of the a posteriori CO distributions obtained from the inversions using the
surface and profile retrievals provides a means of characterizing the potential impact of the
vertical transport biases on the source estimates and the CO distribution.
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1. Introduction

[2] Atmospheric carbon monoxide (CO) is a product of
incomplete combustion and a byproduct of the oxidation of
hydrocarbons in the atmosphere. It plays a key role in con-
trolling the oxidative capacity of the atmosphere since it is
the main sink for the hydroxyl radical (OH), the primary tro-
pospheric oxidant. Inverse modeling of atmospheric CO has
been the focus of several studies during the past decade to
better quantify regional emissions of CO. These inverse
modeling studies have employed surface observations [e.g.,
Pétron et al., 2002; Kasibhatla et al., 2002; Hooghiemstra
et al., 2011], space-based measurements [e.g., Pétron et al.,
2004; Heald et al., 2004; Arellano et al., 2006, Arellano and
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Hess, 2006; Kopacz et al., 2010; Jones et al., 2009; Fortems-
Cheiney et al., 2011; Gonzi et al., 2011; Jiang et al., 2011],
and aircraft data [e.g. Palmer et al., 2003; Heald et al.,
2004]. However, as discussed in Jiang et al. [2011], there is
still significant uncertainty in estimates of the regional CO
sources, reflecting, in part, the impact of systematic errors
in the inversion analyses and the varying information con-
tent of the different datasets. In this context, systematic
model errors in convective transport are a particular concern
as Tost et al. [2010] have shown that the choice of convec-
tion scheme in a given model can result in discrepancies in
the simulated distribution of CO as large as 20% globally
and 100% locally.
[3] In their inversion analysis of CO profiles from the

Measurement of Pollution in the Troposphere (MOPITT)
instrument and the Tropospheric Emission Spectrometer
(TES), Jones et al. [2009] found that their a posteriori CO
emissions resulted in an overestimate of CO abundances rel-
ative to surface measurements in the southern hemisphere.
Arellano et al. [2006] found that their a posteriori emission
estimates, inferred from MOPITT column CO retrievals,
overestimated the CO as observed from the surface sites in
the southern hemisphere, which they speculated could be
due to bias in transport in their model. These studies used
the same version of the MOPITT data (version 3) and their
results are suggestive of discrepancies in the vertical trans-
port in the models employed in the inversion analyses.
Recently, Hooghiemstra et al. [2011] found that the source
estimates inferred from surface CO data improved the mod-
eled CO relative to MOPITT data throughout the northern
hemisphere, but underestimated the MOPITT data in the
southern hemisphere. In their analysis, Hooghiemstra et al.
[2011] used version 4 of the MOPITT data, but since the
primary surface source of CO in the southern hemisphere
is the biomass burning in regions such as South America,
Africa, and Indonesia, where convective transport plays an
important role in exporting the CO emissions to the free
troposphere, the Hooghiemstra et al. [2011] results could
also be due to the influence of transport biases. Ideally, in
the absence of transport bias, the surface and satellite data
should provide consistent constraints on the sources, if the
data coverage is representative of the spatiotemporal vari-
ability in CO.
[4] With an observing strategy that achieves complete

global coverage every 3 days, MOPITT provides dense sam-
pling of the CO distribution. The newly available multi-
spectral retrievals (version 5) exploit both the near-infrared
(NIR) and the thermal infrared (TIR) spectral domains to ob-
tain greater sensitivity to CO in the lower troposphere over
land [Deeter et al., 2011] than previous remote sensing pro-
ducts, which were primarily sensitive to middle and upper
tropospheric abundances or column amounts. The sensitivity
to lower and upper tropospheric CO in the new MOPITT v5
retrievals offers a unique opportunity to assess here, using
the Goddard Earth Observing System (GEOS)-Chem model,
the impact of the surface level retrievals, the profiles, and the
column amounts on the inferred CO source estimates in the
context of potential biases in the vertical transport of CO in
the model. We focus here on the June–August 2006 period,
as a test case, when convective transport associated with the
Asian monsoon has a significant impact on the atmospheric
circulation and the distribution of CO in the troposphere.

2. Observations and Model

2.1. MOPITT

[5] TheMOPITT instrument was launched on 18 December
1999, on NASA’s Terra spacecraft in a sun-synchronous polar
orbit at an altitude of 705 km, with a 10:30 local time equator
crossing, and a spatial resolution of 22� 22 km. In the version
5 retrievals, the TIR (4.7mm) radiances are combined with the
NIR (2.3mm) radiances to significantly improve the sensitivity
to lower tropospheric CO over land. The retrieved volume
mixing ratios (VMR) are reported on 10 pressure levels
(surface, 900, 800, 700, 600, 500, 400, 300, 200, and
100 hPa). Similar to the MOPITT version 4 data product
[Deeter et al., 2010], the v5 retrievals are performed with re-
spect to the logarithm of the CO VMR using an optimal esti-
mation approach. The retrieved CO profiles can be expressed
as a linear estimate of the true atmospheric state:

ẑ ¼ za þ A z� zað Þ þGe (1)

where za is the MOPITT a priori CO profile (expressed as log
(VMR)), z is the true atmospheric state (also as log(VMR)),
Ge describes the retrieval error, and A ¼ @ẑ=@z is the
MOPITT averaging kernel matrix, which gives the sensitivity
of the retrieval to the actual CO in the atmosphere. Similar to
the version 4 product, the version 5 retrievals use a monthly
mean profile from the MOZART-4 CTM as the a priori infor-
mation za, which is significantly better than the fixed global
profile used in the version 3 retrievals. In our analysis we con-
struct CO column amount by integrating the retrieved CO pro-
file, ĉ ¼ tT ẑ, where t is the column operator that includes both
the conversion from VMR to number density and the vertical
integration in the pressure coordinate.
[6] The main advantage of the MOPITT v5 TIR/NIR

product over previous TIR-only retrievals is the use of the
NIR spectral information over land to obtain greater sensi-
tivity to CO in the lowermost troposphere over land. The
zonal average degrees of freedom for signal (DFS) for the
TIR-only retrievals is typically about 1.5 [Deeter et al.,
2004], but Worden et al. [2010] have shown that the DFS
for the TIR +NIR data are, on average, 32% greater over
land. The MOPITT v5 retrievals can, therefore, provide
independent constraints on lower and upper tropospheric
CO. This can be seen in the averaging kernel rows shown
in Figure 1. Over North America the surface sensitivity for
summertime observations peaks strongly near 900 hPa, and
the retrievals at 900, 800, and 700 hPa have peak sensitivi-
ties between 800 and 700 hPa, which decrease rapidly into
the upper troposphere. In the upper troposphere, the retrie-
vals at 400, 300, and 200 hPa have peak sensitivity at about
300 hPa, which decreases significantly with depth into the
lower troposphere. The comparison of the averaging kernel
over North America to that over Southeast Asia or across
the tropics (between 10�S and 10�N) shows that there is less
lower tropospheric sensitivity in these regions due to the fact
that the Southeast Asian region and the tropical band be-
tween 10�S and 10�N include a large number of observa-
tions over the ocean, where the retrievals are actually based
only on TIR measurements.
[7] The MOPITT v5 data are new and have not been as

well validated as the previous versions of the retrievals.
Therefore, we have conducted an indirect validation of the

JIANG ET AL.: EFFECT OF CONVECTION ON INVERSION

2074



data by assimilating the MOPITT v4 and v5 retrievals sepa-
rately into the GEOS-Chem model, using a sequential sub-
optimal Kalman filter [Parrington et al., 2008]. The data
were assimilated from 1 April 2006 to 31 August 2006,
and the zonal mean relative differences between the v4 and
v5 assimilated CO fields for June–August are shown in
Figure 2. In general, the two assimilated data sets agree well
from the surface to about 300 hPa. In the extratropics, the v5
assimilated CO fields are about 5% smaller in the lower and
middle troposphere and about 10% larger between 300 and
200 hPa. At higher altitudes, above 200 hPa, the v5 assimi-
lated fields are significantly greater, which could be due to
biases in the MOPITT v5 retrievals at 150 hPa. As described
below, in our inversion analyses, we use only MOPITT v5
retrievals at altitudes below 200 hPa.

2.2. GEOS-Chem

[8] The GEOS-Chem global chemical transport model
(CTM) (data are available at http://www.geos-chem.org) is
driven by assimilated meteorological observation from the

NASA GEOS-5 at the Global Modeling and Data Assimila-
tion Office. We use version v8-02-01 of GEOS-Chem, at a
horizontal resolution of 4� � 5�. Our analysis is based on
the CO-only simulation in GEOS-Chem, which uses
archived monthly OH fields from the full chemistry run.
The global anthropogenic emission inventory is EDGAR
3.2FT2000 [Olivier and Berdowski, 2001] but is updated
by the following regional emission inventories: the US
Environmental Protection Agency National Emission
Inventory for 1999 [Hudman et al., 2008] in North America,
the Criteria Air Contaminants inventory for Canada, the Big
Bend Regional Aerosol and Visibility Observational
(BRAVO) Study Emissions Inventory for Mexico [Kuhns
et al. 2003], the Cooperative Program for Monitoring and
Evaluation of the Long-range Transmission of Air Pollutants
in Europe (EMEP) inventory for Europe in 2000 [Vestreng
and Klein, 2002], and the Streets and Zhang Asia emissions
inventory for 2006 [Zhang et al., 2009]. Biomass burning
emissions are from the interannual GFED2 inventory with
monthly resolution [van der Werf et al., 2006]. Additional
CO sources come from oxidation of methane and biogenic
volatile organic compounds (VOCs,) as described in previous
studies [e.g., Kopacz et al., 2010; Jiang et al. 2011]. The
global anthropogenic source (60�S–60�N) of CO from fossil
fuel and biofuel combustion is 50.2Tg/month. The global
source of CO from biomass burning and non-methane volatile
organic compounds (NMVOCs) is 41.0 Tg/month and
69.9 Tg/month, respectively. Figure 3 shows the monthly
mean CO emission distribution for June–August 2006.
[9] When comparing the GEOS-Chem model simulation

with MOPITT observations, the modeled CO has to be
smoothed with the MOPITT averaging kernels. Using the
linear expansion of the retrieval, equation (1), the model is
transformed as follows:

ẑm ¼ za þ A zm � zað Þ (2)

where zm is the raw modeled profile. Equation (2) is the
observation operator, which is used to calculate the cost
function and the maps, presented in Section 4, of the relative
biases between the model and the MOPITT data.

Figure 1. Regional mean MOPITT averaging kernel rows for June–August 2006. The boundaries for
these regions are shown in Figure 6b. The North American region contains only land observations,
whereas the equatorial and Indian/Southeast Asian regions include many ocean scenes. The weak lower
tropospheric sensitivity in curve b and curve c is caused by the large number of ocean scenes, where
the retrievals are based only on TIR measurements.

Figure 2. Zonal mean relative bias in assimilated CO fields
with MOPITT v4 and v5, calculated as (v5� v4) / v4, for
June–August 2006. The v5 data at and above 200 hPa (green
dashed line) are not used in this work.
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3. Inversion Approach

[10] The inverse method seeks an optimal estimate of the
CO sources that is consistent with both the observed atmo-
spheric concentrations and the a priori constraints on the
sources by minimizing the cost function J(x),

J xð Þ ¼ F xð Þ � yð ÞTS�1
Σ F xð Þ � yð Þ þ x� xað ÞTS�1

a x� xað Þ (3)

where x is the state vector of emissions, y is the observed
concentrations, and F(x) is the forward model, as described
in Jones et al. [2009], which represents the transport of the
CO emissions in the GEOS-Chem model and accounts for
the vertical smoothing of the MOPITT retrieval, described
in equation (2). Here xa is the a priori estimate and SΣ and
Sa are the observational and a priori error covariance matri-
ces, respectively. The first term on the right in equation (3)
represents the mismatch between the simulated and observed
concentrations weighted by the error covariance of the sys-
tem. The second term represents the departure of the esti-
mate from the a priori. The cost function in equation (3) is
minimized using the adjoint of GEOS-Chem model in a
four-dimensional variational (4D-var) approach [Henze
et al., 2007], which has been previously used for assimila-
tion of CO and ozone [e.g., Kopacz et al., 2010; Singh
et al. 2011; Jiang et al., 2011; Parrington et al., 2012].
[11] A fundamental assumption in minimizing equation (3)

is that the observation and model errors are Gaussian. We
focus here on the impact of vertical transport biases in the
model on the source estimates. Biases in the data will also
adversely impact the inferred source estimates. To avoid the
influence of the positive observation bias in 200–100 hPa layer
shown in Figure 2 and to minimize the effects of the strato-
sphere on the inversion, we neglected the highest two
MOPITT levels (200 and 100 hPa) in the analyses. But in
transforming the modeled profile into the MOPITT observa-
tion space using the averaging kernels and a priori profiles,
we employ the full model profile from the surface to the top

of the atmosphere. We also reject MOPITT data with CO col-
umn amounts less than 5� 1017mol/cm2 and with low-cloud
observations. Since the NIR radiances measure reflected solar
radiation, only daytime data are considered here. We assimi-
late MOPITT data from June–August 2006 and conduct three
different inversion analyses to examine the impact of the ver-
tical information from the MOPITT retrievals on the source
estimates. We compare assimilations based on (1) the tropo-
spheric profiles at altitudes below 200 hPa (the 300 hPa
MOPITT retrieval layer), (2) the tropospheric column
amounts (integrated up to 200 hPa), and (3) the surface level
retrievals only.
[12] As in the work of Jiang et al. [2011], we assume a

uniform observation error of 20% to account for representa-
tiveness errors and the influence of random transport errors
in the model. This will overestimate the errors for ocean
scenes, but it will underestimate it for lower tropospheric
retrievals over land. However, as shown by Heald et al.
[2004], the estimates from the main source regions are rela-
tively insensitive to the observation errors since these errors
are assumed to be random and because we are assimilating a
large number of observations (about 66,000 in the case of
the surface level inversion). Because the CO observations
provide constraints only on the total CO emitted from a
given region, there is insufficient information in the inver-
sion to reliably distinguish different CO source types.
Following Jiang et al. [2011], we combine the combustion
CO sources (fossil fuel, biofuel, and biomass burning) with
the CO from the oxidation of biogenic NMVOCs and solve
for the total CO emissions in each grid box, assuming a 50%
uniform a priori error. The source of CO from the oxidation
of methane is aggregated into a global source, which we
optimize assuming an a priori uncertainty of 25%. We also
assume that the a priori error covariance matrix Sa is diagonal.
[13] Because the lifetime of CO is about 2months, model

errors can accumulate and bias the initial CO distribution at
the beginning of the assimilation period, which, in turn,
would bias the top-down source estimates. We produce an
improved initial condition by assimilating MOPITT v5 data,
using the sequential suboptimal Kalman filter, between 1
April 2006 and 31 May 2006. This provides a distribution
of CO on 1 June 2006 (the beginning of the assimilation pe-
riod) that is in better agreement with the MOPITT data than
the free running model. Figure 4a shows the model bias in
25–31 May 2006, with the original GEOS-Chem initial con-
ditions. The model significantly underestimates the CO
abundances across the northern extratropics. The zonal mean
bias in the CO columns in the extratropics (20�N–60�N)
decreased from �24.0% to 0.2% with the Kalman filter
assimilation (Figure 4b). As a result of the optimized initial
conditions at the end of May 2006, discrepancies between
the model and MOPITT during June to August will either
reflect errors in the prescribed CO sources in the model or
biases in the model transport. The objective of the inversion
analysis is to use the mismatch between the model and
MOPITT to obtain an improved estimate of the CO sources
for the June–August 2006 period.

4. Results and Discussion

[14] The scaling factors, which are the ratio of the a pos-
teriori emission estimates to the a priori values, are shown

Figure 3. Monthly mean CO emissions from combustion
sources and the oxidation of biogenic NMVOC, averaged
for June–August 2006. The unit is 108 kg/month. The black
boxes define the regions used for the budget analysis in
Table 1.
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in Figure 5 for the inversion analyses based on the three
MOPITT data sets described in Section 3: the retrieved CO
profile, the column abundances, and the surface level retrie-
vals. The first-order spatial patterns of the changes in the
emissions (Figures 5a, 5b, and 5c) are similar for the inver-
sions: CO emissions in low-latitude regions were reduced,

whereas emissions in the midlatitudes were increased. The
regional mean scaling factors, averaged for the regions
shown in Figure 3, are listed in Table 1. The a posteriori
emission estimates obtained with the surface level retrievals
are the lowest in most regions. The differences between the
regional estimates from the three inversions are typically
about 15% or less. The most significant discrepancy between
the three emission estimates is for the Asian region for
which the inversion using the profiles suggests an 11% in-
crease in a priori Asian emissions, whereas the surface level
retrievals suggest a 30% decrease.
[15] The biases in the a priori and a posteriori modeled CO

columns are shown in Figure 6. Since the initial conditions
on 1 June 2006 were optimized to match the MOPITT data,
the model bias during the assimilation period is most pro-
nounced in the tropics, in the vicinity of the Intertropical
Convergence Zone (ITCZ). The largest model biases are
over Central America and over India/Southeast Asia, where
the convective mass fluxes are largest in the middle tropo-
sphere (Figure 6b). All three inversions reduced this model
bias; however, the inversion with the profile data enhanced
the model bias over India/Southeast Asia, suggesting that
the a posteriori emission estimates for this region are biased.
Indeed, the profile inversion suggests an 85% increase in the
Indian/Southeast Asian emissions (averaged over the strong
convection region shown in Figure 6b), whereas the column
and surface level inversions produced a reduction in emis-
sions of 17% and 37%, respectively. Although there are
residual positive biases in the CO columns in the convection
regions in the tropics in all three inversions, we find that the
surface level inversion provides the largest reduction of the a
priori positive model bias. However, the negative column
bias is magnified in some regions, which, as we describe

Figure 4. Relative model bias in column CO, calculated as
(model�MOPITT) /MOPITT. (a) Bias in 25–31 May 2006,
with the original GEOS-Chem initial condition. (b) Bias in
25–31 May 2006, with the Kalman filter assimilation. The
grey grids correspond to MOPITT data gaps.

Figure 5. Scaling factors, which are the ratio of the a posteriori to the a priori emissions, for (a) the
profile inversion, (b) the column inversion, (c) the surface level inversion, and (d) the profile inversion
with MOPITT observations only in the tropics, between 10�S and 25�N. The color scale is saturated at 2,
but the scaling factors is larger than 2 in some grid boxes.
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below, is because the surface inversion exacerbates the
model bias in the upper troposphere.
[16] The vertical structure of the mean model bias aggre-

gated for North America, the tropics, and India/Southeast
Asia is shown in Figure 7. In all three regions the model is
biased high in the middle and lower troposphere and biased
low in the upper troposphere relative to MOPITT. Over
North America the model bias is less than about 10%
throughout the lower and middle troposphere and increases
to �13% at the 300 hPa MOPITT level (300–200 hPa layer).
The model bias is larger across the tropics, particularly over
the Indian/Southeast Asian region, where it is about 35–40%
in the middle troposphere and �10% at the 300 hPa
MOPITT level. Gonzalez Abad et al. [2011] also found that
the model overestimated CO in the middle troposphere and

underestimated it in the upper troposphere in the tropics in
their comparison of GEOS-Chem with CO measured by
the Atmospheric Chemistry Experiment Fourier Transform
Spectrometer (ACE-FTS). The assumption in the CO-only
mode of GEOS-Chem that the VOC source of CO can be
represented as a surface source, reflecting instantaneous
oxidation of the VOCs, could also contribute to the overes-
timate of CO in the lower troposphere and the underestimate
in the upper troposphere. Sensitivity runs using the tagged
CO simulation in GEOS-Chem suggest that the VOC source
contributes about 30% of the CO in the upper troposphere
over Southeast Asia; therefore, attributing the cause of the
observed bias in CO to the VOC source in the model would
require significantly large uncertainties in the surface VOC
emissions. GEOS-5 employs the Relaxed Arakawa Shubert

Table 1. A Priori and a Posteriori CO Emission and Scaling Factors for June–August 2006

Inversion Type
Regions

Global North America Europe Asia South America North Africa South Africa Indo/Australia

A priori (Tg/month) 161.0 23.0 15.0 43.8 23.8 15.7 22.5 16.9
Scaling factor Profile inversion 150.1 22.0 17.8 48.4 18.5 8.0 22.3 12.6

0.93 0.96 1.19 1.11 0.78 0.51 0.99 0.75
Column inversion 141.9 23.1 18.8 37.4 18.0 8.6 22.4 13.0

0.88 1.00 1.25 0.85 0.76 0.55 1.00 0.77
Surface inversion 125.3 20.1 18.0 30.8 18.4 7.6 18.3 11.7

0.78 0.87 1.20 0.70 0.77 0.48 0.81 0.69

Figure 6. Relative model bias in column CO (surface to 200 hPa), calculated as (model�MOPITT) /
MOPITT, for June–August 2006 for CO estimated with (a) the a priori emissions and the a posteriori emis-
sions from (c) the profile inversion, (d) the column inversion, and (e) the surface level inversion. (f) Impact on
CO distribution shows the difference between the results in Figures 6c and 6e. Figure 6b shows the mean con-
vectivemass flux (400 hPa� 500 hPa) in units of kg/m2/s in June–August 2006. The black boxes in Figure 6b
define the regions for Figures 1 and 7.
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(RAS) convection scheme [Arakawa and Schubert, 1973],
and Folkins et al. [2006] and Ott et al. [2009] have shown
that the RAS scheme underestimates the convective mass
fluxes and places the convective outflow too low in altitude,
which would account for the model biases shown in convec-
tion region Figure 7c. Recent studies [Huang et al., 2012;
Liu et al., 2012], showed that observations of CO from the
Microwave Limb Sounder (MLS) indicate strong vertical
transport of CO in the upper troposphere over the Asian
monsoon region, between 10�N and 30�N. Liu et al.
[2012] found that the vertical transport in GEOS-Chem, with
GEOS-5 meteorological fields, is too weak in this region.
[17] Across the tropics and over North America, the pro-

file and column inversions produce similar residual biases
between MOPITT and the a posteriori CO simulations. In
these regions the inversions reduced the model bias in the
middle and lower troposphere, but exacerbated the negative
model bias in the upper troposphere. Over India/Southeast
Asia, on the other hand, the profile inversion enhanced the
positive model bias in the lower and middle troposphere,
but reduced the model bias in the upper troposphere. Large
discrepancies between the three inversions are observed in
regions where strong convection coincides with high emis-
sions of CO. India/Southeast Asia and Central America are
the major deep convection regions in June–August 2006.
However, emissions are significantly greater in Southeast
Asia than in Central America (see Figure 3). As a result,
the profile inversion increases Indian/Southeast Asian
emissions to reduce the negative model bias in the upper
troposphere. Indeed, observations of CO by MLS show the
maximum in CO concentrations over Southeast Asia at
200 hPa [Filipiak et al., 2005; Li et al., 2005; Park et al.,
2007, 2009], where the MOPITT averaging kernels are
strongly peaked (shown in Figure 1c). Using the column
data mitigates the impact of the model bias in the upper
troposphere and, thus, the column inversion produces a
reduction in the CO emissions in this region. As expected,
using the surface level retrievals produced an even greater
reduction in the emissions in this region since these retrie-
vals are sensitive mainly to CO in the lower and middle tro-
posphere, where the model is highly biased. To assess the
impact of possible biases in the MOPITT data as reflected
in the larger extratropical differences between the v4 and

v5 assimilated fields shown in Figure 2, we conducted an
additional inversion analysis using MOPITT profiles only
between 10�S and 25�N, where the v4 and v5 assimilated
fields were consistent. In the tropics, the inversion results
(Figure 5d) are similar to those obtained using full MOPITT
coverage (Figure 5a). Thus, we believe that the enhanced a
posteriori model bias obtained in the Indian/Southeast Asian
region with the profile inversion is not due to the possible
biases in the MOPITT retrievals.
[18] The difference between the profile and surface level

inversion reflects the impact of the transport bias on the
CO field. As shown in Figure 6f, the impact on the CO dis-
tribution is mainly within the Tibetan anticyclone region
(over South Asia and the Middle East) but extends across
the North Pacific to North America. There is also a large im-
pact over the source region in central Africa. The CO feature
over Asia and across the north Pacific is typical of the CO
outflow pattern from the summertime Asian monsoon,
which Jiang et al. [2007] showed is linked to the summer-
time maximum in upper tropospheric CO abundances over
the Pacific.
[19] To better understand the nature of the model bias

shown in Figure 7, we assimilated the MOPTT data to opti-
mize the CO initial distribution (a state optimization)
through the month of June 2006. We assimilated the data
in 10-day intervals, on 1–10, 11–20, and 21–30 June 2006,
using the a posteriori CO emissions of the surface level
inversion. The motivation is that in optimizing the emissions
(a source optimization), the model is employed as a transfer
function that relates the emissions to the observations, there-
fore, if the model transport is biased there will be residual
biases between the observation and the modeled CO obtained
with the a posteriori emissions. On the other hand, optimizing
the CO initial distribution forces the modeled CO to match the
observations as best as possible over the assimilation period,
given the uncertainty of the model and observations. As
expected, the residual model bias in the upper troposphere in
the state optimization, shown in Figures 8b, 8d, and 8f, is
small in each 10-day interval. In contrast, as shown in
Figure 8a, when we ran the model over the 1–10 June 2006
period without assimilation; starting from the same initial con-
ditions that were used in the state optimization in Figure 8b,
we obtained larger residual model biases in the upper

Figure 7. Vertical profile of the relative regional model bias, calculated as (model�MOPITT) /MOPITT,
for June–August 2006. The modeled profiles were transformed with the MOPITT averaging kernels and a
priori profiles. The boundaries for these regions are shown in Figure 6b. The x axis is different in each curve
to better illustrate the changes in the model bias in each region with the three inversions.
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troposphere. Despite the fact that the model was forced with
the a posteriori emissions, the model bias shown in Figure 8a
emerged over the 10-day period, with the largest bias over the
Asian monsoon region. Similarly large residual model biases
emerged during the 11–20 and 21–30 June 2006 intervals
when we ran the model without optimizing the state
(Figures 8c and 8e). Given the long lifetime of CO, discrepan-
cies in transport are likely to be the main source of the rapid
growth of this model bias in the upper troposphere.
[20] The large negative model bias in upper troposphere in

the Asian monsoon region, as shown in Figures 8a, 8c, and
8e, is the major driven force for the increase of CO emission
in India/Southeast Asia in the profile inversion. As explained
above, it is in this region that CO is at a maximum in
the upper troposphere, so the inversion strongly adjusts the
Asian emissions to compensate for the model bias. On the
other hand, the negative model bias in the Asian monsoon
region is not present in the inversion with the column data
since the model bias in the tropospheric column is domi-
nated by the positive bias in the lower and middle tropo-
sphere (Figure 6a). The overestimate in the model column
leads to the emission reduction shown in Figure 5b.
[21] We note that a potential factor influencing the inver-

sion in the tropics could be the lower data density due to
cloud cover in regions of convection. The inversion could

over-adjust the emissions in regions with low data density
since these regions will contribute less to the cost function.
We examined this by conducting a profile inversion in which
we weighted the first term in the cost function, equation (3),
to ensure that each grid box with observations contributed
equally to the cost function. We found that this did not sig-
nificantly change the residual model bias shown in Figure 6,
suggesting that the non-uniform observational coverage has
a limited impact on our results.
[22] We compared the a priori and a posteriori model

simulations with data from the NOAA Global Monitoring
Division (GMD) network (GMD data were obtained from
ftp://ftp.cmdl.noaa.gov/ccg/co/flask/event/). We selected
the data between June and August 2006 from 48 stations
across the globe, as shown in Figure 9. Since each station
only has a small number of observations during the three-
month period, we focus on global statistics to assess the
fidelity of the modeled simulation. In Figure 10, all three
inversions improved the CO distribution relative to surface
in situ observation. As expected, the CO distribution from
the inversion using the surface level retrievals best agrees
with the GMD data, with a mean model bias of 2.7 ppb com-
pared to the a priori model bias of 7.8 ppb.
[23] To evaluate the model simulation in the upper tropo-

sphere we compare the modeled CO to data from the Civil

Figure 8. Relative residual bias at 300 hPa in June 2006, calculated as (model�MOPITT) /MOPITT.
Figures in row 1 (Figures 8a and 8b), row 2 (Figures 8c and 8d), and row 3 (Figures 8e and 8f) show
the results from the assimilation experiments for 1–10, 11–20, and 21–30 June 2006, respectively. The
(a, c, and e) forecast plots show the residual bias in the forward model simulation of CO, whereas the
(b, d, and f) assimilation plots show the residual bias from the state optimization for the initial CO distri-
bution. For each 10-day period, the forecast and assimilation runs were initiated with same initial condi-
tions. For the simulations starting on 1 June 2006 (Figures 8a and 8b), the initial conditions were obtained
from assimilation of data in May 2006. The initial conditions for the runs on 11 and 21 June 2006 were
obtained from the optimized state from the previous 10 days, in Figures 8b and 8d, respectively.
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Aircraft for the Regular Investigation of the Atmosphere
Based on an Instrumented Container (CARIBIC) aircraft
measurements [Brenninkmeijer et al., 2007; Scharffe et al.,
2012]. There were two round-trip flights along the Frankfurt
(Germany) to Guangzhou (China) to Manila (Philippines)
route during June–August 2006 (5–7 July and 31 July to 2
August 2006), with cruising altitude at about 11 km
(Figure 9). To restrict the comparison to locations in the tro-
posphere we only used the observation data south of 40�N.
As shown in Figure 11, the profile inversion improved the

model simulation relative to CARIBIC data, reducing the
model bias from �2.9 ppb to 0.1 ppb. On the other hand,
both the column inversion and surface level inversions
significantly magnified the negative model bias in upper
troposphere. The opposite impact of surface level inversion
on the model agreement with the independent data at the
surface and in the upper troposphere suggests the presence
of vertical transport errors in the inversion.

5. Summary

[24] We have examined the potential impact of vertical
transport model errors on inferred CO source estimates using
the new version 5 MOPITT retrievals. We have shown that
inverse modeling of CO emissions using the surface level
MOPITT retrievals, the tropospheric profiles, or the CO
column amounts can produce significant differences in the
inferred source estimates in regions of convection and strong
CO emissions in the model. The inversion using the CO
profiles suggested an 85% increase in emissions in India/
Southeast Asia, which exacerbated the model bias in the
lower and middle troposphere, whereas using the surface
level retrievals produced a 37% decrease in Indian/Southeast
Asian emissions, which exacerbated the underestimate of
CO in the upper troposphere. In general, the a posteriori
CO distribution obtained from the inversion using the sur-
face level MOPITT retrievals produced the smallest residual
model bias relative to MOPITT in the lower and middle

Figure 9. Global distribution of CO flask sample collection
locations from 48 NOAAGMD sites (red squares) and aircraft
sampling locations from CARIBIC (blue circles).

Figure 10. Scatter plots comparing model simulation with NOAA GMD surface observation, in
June�August 2006, for (a) the a priori simulation, (b) the a posteriori simulations of the profile inversion,
(c) the a posteriori simulations of the column inversion, and (d) the a posteriori simulations of the surface
level inversion. Measured GMD CO abundance in ppb mole fraction was referenced to the NOAA/WMO
2004 scale. The modeled CO is sampled at the GMD observation time and location in ppb. The mean
model bias (model minus observation) and the root-mean-square error (RMSE) are calculated for each
case. The red line shows the linear fit, whereas the green dashed line shows the 1:1 relationship.
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troposphere and agreed best with independent surface CO
data. However, the surface level inversion exacerbated the
model bias in the upper troposphere relative to independent
aircraft data from CARIBIC. Similar results were obtained
by Nassar et al. [2011] in their inversion analysis of CO2 data
from TES and the GMD network, also using GEOS-Chem.
Their inversion analysis of the GMD surface CO2 data
produced a posteriori CO2 fields that were in better agreement
with independent surface data, but which exacerbated the
model disagreement with aircraft data in the upper tropo-
sphere, suggesting the influence of vertical transport errors in
the model.
[25] Accounting for the influence of vertical transport

biases on the inversion analyses of long-lived gases such
as CO, CO2, and CH4 is clearly important. However, charac-
terizing vertical transport biases is challenging. The new
multi-spectral v5 MOPITT data provide a valuable dataset
for evaluating vertical transport and characterizing the biases
in models. Because of the greater sensitivity to lower tropo-
spheric CO in the v5 retrievals, compared to the previous
versions of the retrievals, the use of the lower tropospheric
v5 data in an inversion produces source estimates that
depend mainly on the lower tropospheric loading of CO.
In contrast, inversions using upper tropospheric CO retrie-
vals rely on the vertical transport in the model to relate the
CO surface emissions to the observed CO. Our results show
that comparison of the a posteriori CO distributions obtained
from inversions using the surface and profile retrievals

provides a means of characterizing the potential impact of
the vertical transport biases on the source estimates and the
CO distribution.
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